Distributed Shared Memory and Machine Learning

CSci 8211 Chai-Wen Hsieh 11/5/2018

Overview of Distributed Shared Memory (DSM)

Source: http://web.sfc.keio.ac.jp/~rdv/keio/sfc/teaching/architecture/architecture-2008/lec10-dsm.html

Key Issues

1. **DSM algorithm**

how accesses actually executes

2. Implementation level

• where the access is implemented

3. Memory consistency model

• how to maintain consistent

DSM System Design Choices

- DSM algorithm
- Implementation level
- Memory consistency model
- Cluster configuration
- Interconnection network
- Structure of shared data
- Granualarity of shared data
- Data compression?

DSM Systems and Algorithms

- **DSM systems** : all systems that provide shared memory abstraction on a distributed shared-memory system
- Basic problems:
 - Distribution of shared data
 - Coherent view of shared data

DSM Systems and Algorithms

- Two strategies: *replication* and *migration*
- Algorithm classifications

SRSW	Single reader/single writer	No replication, maybe migration
MRSW	Multiple reader/single writer	Read replication, invalidation
MRMW	Multiple reader/multiple writer	Full replication

Implementation Level

Software	User-level library, runtime system, OS kernel, language	1-8 Kb	More flexible
Hardware	CC-NUMA COMA RMS	4-128 bytes	Faster searching and directory functions
Hybrid	various	16 bytes-8 Kb	Balance the cost-complexity trade-offs

Memory Consistency Model - The "trade-off"

• The legal ordering of memory references issued by a processor, as observed by other processors

Memory consistency model	Strict	Loose
Memory consistency		➡
Access latency		➡
Bandwidth requirement		♣
Programming simplicity		➡

Memory Consistency Model - The "trade-off"

- Strong consistency models
 - Sequential consistency: the same sequence of reads and writes
 - *Processor* consistency: same sequence of writes
- More relaxed models
 - *Weak* consistency: consistent only on synchronization memory access
 - *Release* consistency: ordinary access between acquire/release pairs
 - *Lazy* release consistency: modifications wait until the next acquire
 - *Entry* consistency: use associated shared variable to protect protected shared variable

What Can We Do -1

- How to do parallelization for a particular application?
 - Analyze its access pattern
 - Split the job into several sub-jobs
 - Parallel, not sequential
 - Independent
 - More reads, less writes

What Can We Do -2

- Preprocessing the shared memory data
 - Predict next data migration/repetition in terms of
 - Usage
 - Size
 - Destination
 - Relocate/copy the data based on prediction

What Can We Do -3

- Weigh between concurrency and consistency
 - Examine application before runtime for best consistency model
 - During runtime, change model accordingly
 - Memory miss
 - Bottleneck
 - Data source

Papers

 Jelica Protic (1996). Distributed shared memory: Concepts and systems. URL http://dx.doi.org/10.1109/88.494605
Tasoulas, Z.-G., Anagnostopoulos, I., Papadopoulos, L., & Soudris, D. (2018). A Message-Passing Microcoded Synchronization for Distributed Shared Memory Architectures. *IEEE Transactions on*

Computer-Aided Design of Integrated Circuits and Systems, 0070(c),

1-1. https://doi.org/10.1109/TCAD.2018.2834423

Papers

3. Vasava, H. D., Vasava, H. D., & Rathod, J. M. (2017). Improving Performance of Distributed Shared Memory (DSM) on Multiprocessor Framework with Software Approach. Indian Journal of Science and Technology, 10(28), 1–7. https://doi.org/10.17485/ijst/2017/v10i28/112308 4. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., & Oskin, M. (2015). Latency-Tolerant Software Distributed Shared Memory. Atc, 291–305. Retrieved from https://www.usenix.org/conference/atc15/technical-session/presentation/n lson?