
Distributed Shared Memory 
and Machine Learning

CSci 8211
Chai-Wen Hsieh

11/5/2018



Overview of Distributed Shared Memory (DSM)

Source: http://web.sfc.keio.ac.jp/~rdv/keio/sfc/teaching/architecture/architecture-2008/lec10-dsm.html

System
performance:
● Lookup
● Action



Key Issues

1. DSM algorithm
○ how accesses actually executes

2. Implementation level
○ where the access is implemented

3. Memory consistency model
○ how to maintain consistent



DSM System Design Choices

● DSM algorithm
● Implementation level
● Memory consistency model
● Cluster configuration
● Interconnection network
● Structure of shared data
● Granualarity of shared data
● Data compression?



DSM Systems and Algorithms

● DSM systems : all systems that provide shared memory abstraction 
on a distributed shared-memory system

● Basic problems:
○ Distribution of shared data 
○ Coherent view of shared data



DSM Systems and Algorithms

● Two strategies: replication and migration
● Algorithm classifications

SRSW Single reader/single writer No replication, maybe migration

MRSW Multiple reader/single writer Read replication, invalidation

MRMW Multiple reader/multiple writer Full replication



Implementation Level

Software User-level library, 
runtime system, OS 
kernel, language

1-8 Kb More flexible

Hardware CC-NUMA
COMA
RMS

4-128 bytes Faster searching and 
directory functions

Hybrid various 16 bytes-8 Kb Balance the 
cost-complexity 
trade-offs



Memory Consistency Model - The “trade-off”

● The legal ordering of memory references issued by a processor, as observed 
by other processors

Memory consistency model Strict Loose

Memory consistency

Access latency

Bandwidth requirement

Programming simplicity



Memory Consistency Model - The “trade-off”

● Strong consistency models
○ Sequential consistency: the same sequence of reads and writes
○ Processor consistency: same sequence of writes

● More relaxed models
○ Weak consistency: consistent only on synchronization memory access
○ Release consistency: ordinary access between acquire/release pairs
○ Lazy release consistency: modifications wait until the next acquire
○ Entry consistency: use associated shared variable to protect protected 

shared variable



What Can We Do -1

● How to do parallelization for a particular application?
○ Analyze its access pattern
○ Split the job into several sub-jobs
○ Parallel, not sequential
○ Independent
○ More reads, less writes



What Can We Do -2

● Preprocessing the shared memory data
○ Predict next data migration/repetition in terms of

■ Usage
■ Size
■ Destination

○ Relocate/copy the data based on prediction



What Can We Do -3

● Weigh between concurrency and consistency
○ Examine application before runtime for best consistency model
○ During runtime, change model accordingly

■ Memory miss
■ Bottleneck
■ Data source



Papers

1. Jelica Protic (1996). Distributed shared memory: Concepts and 
systems. URL http://dx.doi.org/10.1109/88.494605

2. Tasoulas, Z.-G., Anagnostopoulos, I., Papadopoulos, L., & Soudris, D. 
(2018). A Message-Passing Microcoded Synchronization for 
Distributed Shared Memory Architectures. IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems, 0070(c), 
1–1. https://doi.org/10.1109/TCAD.2018.2834423



Papers

3. Vasava, H. D., Vasava, H. D., & Rathod, J. M. (2017). Improving 
Performance of Distributed Shared Memory (DSM) on 
Multiprocessor Framework with Software Approach. Indian Journal 
of Science and Technology, 10(28), 1–7. 
https://doi.org/10.17485/ijst/2017/v10i28/112308

4. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., & Oskin, 
M. (2015). Latency-Tolerant Software Distributed Shared Memory. 
Atc, 291–305. Retrieved from 
https://www.usenix.org/conference/atc15/technical-session/presentation/n
elson


